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S T A T I S T I C A L  C H A R A C T E R I S T I C S  O F  T H E  

O F  A C H E M I C A L L Y  A C T I V E  A D D I T I V E  

IN A T U R B U L E N T  M I X I N G  Z O N E  

A. F. K u r b a t s k i i  

DIEFUSION 
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In the a r t i c l e  a numer i ca l  solution of the connected s y s t e m  of the equations of turbulent  
t r a n s f e r  fo r  the f ields of the veloci ty  and concentra t ion  of a chemica l ly  act ive  addit ive is 
used to calculate  a num ber  of the second momen t s  of the concentra t ion  field in a fiat  m ix -  
ing zone. The s y s t e m  of t r a n s f e r  equations iS der ived f r o m  the equations for  a common 
function of the dis t r ibut ion of the f ields of the pulsat ions  of the veloci ty  and the concen t ra -  
tion [1] and is s impl i f ied in the approximat ion  of the boundary l aye r .  A closed f o r m  of the 
t r a n s f e r  equations is obtained on the level  of t h ree  moments ,  using the hypothesis  of four  
momen t s  [2] and i ts  genera l i zed  f o r m  for  mixed momen t s  of the field of the veloci ty  and 
the field of a pas s ive  s ca l a r .  The different ia l  ope ra to r  of the closed s y s t e m  of the equa- 
t ions of turbulent  t r a n s f e r  for  the f ields of the veloci ty  and the concentra t ion is found by 
a method of c losure  not of the pa rabo l ic  type but of a weakly hyperbol ic  type [3]. An i m -  
pl ici t  d i f ference  scheme  proposed  in [4] is used for  the numer i ca l  solution. The resu l t s  
of the numer i ca l  solution a r e  compared  with the exper imenta l  data of [5]. 

1. S y s t e m  o f  E q u a t i o n s  f o r  t h e  M o m e n t s  o f  t h e  F i e l d  

o f  t h e  C o n c e n t r a t i o n  

The turbulent  diffusion of a dynamical ly  pa s s ive  additive in a f r ee  inhomogeneous turbulent  flow of an 
i ncompres s ib l e  liquid is cons idered  in an Euler  descr ipt ion.  The dynamic pass iv i ty  of the additive pos tu-  
l a tes  that  the field of the veloci ty  u (x) does not undergo any apprec iab le  effect  f r o m  the side of the p r o c e s s  
of turbulent  diffusion of the addit ive.  The addit ive can r eac t  chemica l ly  with the med ium of the flow. The 
chemica l  reac t ion  Under cons idera t ion  can be a s sumed  to be pass ive ,  which can be regarded  as justif ied 
fo r  "weak" chemica l  reac t ions  in the  flow {taking p lace  re la t ive ly  slowly and quietly) and smal l  concen t ra -  
t ions of the impur i ty .  It is a s sumed  that  the f ields of the pulsat ions of the veloci ty  and concentra t ion of the 
additive can be descr ibed  by a common dis t r ibut ion function, sa t i s fying some  "kinetic" equation [1]. The 
equations for  the momen t s  of the field of the concentra t ion  in a f r ee  [nhomogeneous turbulent  flow a r e  de- 
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rived in a manner  analogous to that used in [I, 4] to obtain equations for  the moments  of the field of the 
velocity. It is neces sa ry  only to adopt the relationship for  the value of d0 /d t  entering into the equation 
for  the common distribution function. This quantity consists  of two t e rms ,  the f i rs t  of which models the 
ra te  of change of the concentrat ion of the additive in an element of the liquid as a resul t  of molecular  dif- 
fusion, and the second, the ra te  of the chemical  reaction.  The f i rs t  t e rm,  whose fo rm is determined f rom 
semiempir ica l  considerat ions,  can also be interpreted as the sca la r  dissipation or  as the rate  of mixing 
of the substance of the additive up to molecu la r  sca les .  The express ion  for  d0/dt has the fo rm 

dO 3 bo ~ll~ O, (i.i) 

where 0' is the fluctuation of the concentrat ion in an Euler  sys tem of coordinates;  b 0 is an empir ical  con-  
stant; # is the "rate  constant of the chemical  react ion" (#=const,  p >0); n is a whole posit ive number  ( n -  > 1), 
and is the "order"  of the chemical  react ion.  (Here and in what follows, notation not specially stipulated 
cor responds  to the notation of [4].) An express ion for  the sca l a r  dissipation [the f i rs t  t e r m  in (1.1)], s imi -  
l a r  to that adopted here, was also used, fo r  example, in [6]. Approximation of the rate of the chemical r e -  
action [the second t e r m  in (1.1)] in the fo rm of a power function only of the concentrat ion 0(x) (but not of 
x)  relates  to the case  of smal l  concentrat ions of the additive in compar ison with the concentrat ions of the 
surrounding medium of the flow. The chemical  react ion with n = 1 takes place in accordance  with a f i rs t  
o rder .  If n > 1 (for example, for n = 2, i.e., "a second-orde r  reaction"),  then in the equation for  the var i -  
ance of the fluctuations of the field of the concentrat ions the t e rm describing the rate of the chemical  t r a n s -  
formation and, in the case of a react ion of a rb i t r a ry  order ,  having the form 2# (0n+l>, contains with n=2,  
in addition to the second moment,  also the third moment (0'~). For  this t e r m  a determining equation must  
be written in which fourth moments  appear .  They can be (approximately) expressed in t e rms  of second 
moments ,  using the general ized hypothesis of four moments .  In a f i rs t  consideration,  it is expedient to 
limit ourselves  to a chemical  react ion of the "f i rs t  order ,"  assuming n= 1 in (1.1). 

Below, equations are  writ ten for  moments  of the f i rs t  three o rders  of the field of the concentration, 
relating to the fully developed free turbulent flow of a completely turbulent incompress ib le  liquid, under 
s teady-s ta te  external conditions without a p r e s s u r e  gradient,  where the additive reac ts  chemical ly with 
the medium of the flow in accordance  with a "f i rs t  order ."  

The equation of conservat ion of the mean concentrat ion of the additive 

0 
o~ [<u~> <o> + <ulO'>] = ~ <o>; (1.2) 

the equation for the components of the vec tor  of the turbulent flow of the additive 

<~> ox~ = - <u;u'~> ~~ <o> _ @~o'> o<~>a~ o<~b4o;>ox~ <~'~o'>- T [T(~o + Sbo) + ~o] + ~@~O'>; (1.3) 

the equation for  the variance of the fluctuatiDns of the field of the concentrat ion 

a <0") a <u'~O") 6b EW2 <y.~.> ~ = - -  2 <u~,O'> O <0> axe= azk o - ~  <0"> § 2~ <0">; (1.4) 

the equations for  the third mixed m o m e n t s  of  the f ie lds  of the pulsat ions  of the ve loc i ty  and the concentrat ion 

<~> ax h <u~Wj~> a <o> < ~ >  - < ~ & o ' >  ~ - 

az h ax k (uhu~> az a ax a 
(*) 

] E + .  

~<,'=~'> . .  ~<o"> a<,'~o'> 
(uk> a x ~  --  <uau~> a--g~h=-- 2 <u~O'> aza 

- -  2 <u'~u'=O'> a <0> 3 E ~/2 ( u ~ O " >  ~ c o T ,.uo:O > -~- 
ax a 8 

+ 2~<u~O >, 

(1.5) 

(1.6) 
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where a 0' b0~ c 0 a re  empir ical  constants;  the angular  brackets  denote averaging with respect  to the ensemble 
of the real izat ions.  The fourth mixed moments,  appearing in the equations of the third mixed moments  
(1.5), (1.6), a r e  expressed in t e rms  of second moments,  using the hypothesis of fourth moments*  

t <u~u~ut~O'> = ( uku~> (u~O > A- (uku,3> (u~O > -~ x ukO } <U~U~>, (1.7) 

-- <o'5 + 

Relationships (1.7), being exact for  Gaussian distributions, in the general  case can be regarded as some 
approximation. The use of relationships (1.7) to close the equations for  the moments  in f ree turbulent 
flows with a gradient of the mean velocity, although indirect,  obviously makes it possible to form a judg- 
ment with respect  to the noncontradictory nature of the hypothesis of fourth moments .  It is shown in [8] 
that closing the equations for  the moments  of the field of a pass ive  additive in a field of isotropic turbu-  
lence using noncumulative approximations (the infinitesimal level of which is the hypothesis of fourth mo-  
ments with respect  to the equality to zero  of the fourth cumulants of the fields of the velocity and the con- 

! 

centration) leads to nonphysical resul ts .  In a model diffusion problem of the var iance of the fluctuations 
of the conCentration of an additive in a field of s teady-s ta te  isotropic turbulence, the hypothesis of the zero  
of the fourth cumulants of the fields of the velocity and the concentrat ion was used [8] to close the equations 
for  the moments .  It was found that, with la rge  diffusion time~, a posit ive quantity, i,e., the variance of the 
fluctuations of a s ca l a r  field, takes on negative values, contradict ing its physical  meaning. 

In view of this it is considered that the value of the var iance of the fluctuations of the concentration 
of an additive (0 T2~, posit ive everywhere  in the region of integration, obtained as the result  of a numerical  
solution of the closed sys tem of equations o f  turbulent t r a n s f e r  for  the fields of the velocity and concentra-  
tion in a f ree inhomogeneous turbulent flow, can there fore  argue in support of the proposi t ion that the non- 
l ineari ty of the equations of the field of the velocity does not lead to the above-mentioned nonphysical r e -  
sults (numerical resul ts  relating to the function (0 ~2) a re  given below). It is possible that the postulated 
absence of nonphysical resul ts  for  the moments  of the field of the concentrat ion in the mixing zone can be 
connected not only with the nonlinearity of the dynamically inhomogeneous turbulent flow, but also with the 
fact that the principal  dynamic mechanism in inhom0geneous turbulence is the interaction between the 
mean flow and the turbulence,  and not interact ion between the fluctuational components of the turbulent 
flow, which, in isotropie turbulence,  de termines  the whole dynamics [8]. 

An immediate  result  of the use of relationships (1,7) for  closing the equations for  the moments (1.2)- 
(1.6) is the following: the sys tem (1.2)-(1.6) is found to be connected with the closed sys tem of moment 
equations of the field of the velocity (system (1.1)-(1,6) f rom [4]) through the coefficients with the der iva-  
t ives and source  t e rms  and through the derivatives of the second moments  of the field of the velocity, due 
to the appearance,  in the left-hand side of (1.5), of the t e r m  marked with an as ter isk .  It can be noted that 
this t e rm is not smal l  in compar ison with the other t e rms ,  even in the approximation of the boundary layer ,  
although a rel iable evaluation of it is difficult due to the lack of experimental  data. 

2 .  T u r b u l e n t  D i f f u s i o n  o f  a C h e m i c a l l y  I n e r t  

A d d i t i v e  in  a F l a t  M i x i n g  Z o n e  

We consider  the problem of the turbulent diffusion of a chemically inert  (p = 0) additive in a two-di-  
mensional mixing zone, for which the sys tem of equations (1.2)-{1.6) is simplified, in the approximation 
of the boundary layer ,  bringing in the experimental  data of [5]. A schematic  picture of the flow in the mix- 
ing zone and its geometr ic  determination are  given in [4]. The resul t  of the simplification is the follow- 
ing sys tem of five quasi l inear  equations for  five sought functions: 

<0> 0 <0> , 0S 

(u> ~- -t- (v> ~ -~- (v"> ~ -~ 0y -- 8 L ~ EI/2S - -  (c~ Ei/2S' 

o <0' / 4_ . . a <0' > 2S o <0> o <0".'> _ - -  6b ~ (Et/2 / L) :a'% 

0 <S'v'> 0 <S'v'> <v") 0S 0 <v"> 3 E 1/2 (S'v'> - -  --L'-- <u> ~---7--A-<v> @ ~-2 ~ + S  @ ---T 

* The hypothesis of four moments  in general ized form (1.7) was f i rs t  used in the problem of the turbulent 
diffusion of an additive in a field of isotropic turbulence.  

(2.1) 
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<u> a <~ + <v> a<~ a,j ~ -k <v") a/0'~>@ -- 83 [ao Ft6bO]E~/2<O,~v,>_~.E~n<O,'-d> J I 

where  

S ------ <O'v'>, S '--O'v ' .  

F r o m  the l a s t  two equations of s y s t e m  (2.1), the third moments  a r e  e x p r e s s e d  in t e r m s  of the second mo-  
ments  using the fo rmulas  

< S'v'> ~ --  ~IE -'/2 [2 @"> ~as + S___g_~_uo <v'>].j, (2.2) 

- - ~ , 2  r_ ~ o s  o <o,~>1 (2.3) 
<O"v'> ~ - % L  " [z~'-~u + <v"> av J" 

Afte r  subst i tut ion of (2.2), (2,3) into (2.1), we finally obtain a c losed s y s t e m  of th ree  quas i t inea r  equations 
for  the th ree  sought s tochas t ic  values of the field of the concentrat ion:  

o <o> _~_ o <o> os <u>~ <v>~+~=O, 

/u>Tz + ( v ) ~ g  -4-<v' -77u = ~ - - ~  J 2<v">. ~-u ~- @ J-- -8-  _~8bo Ei/~S___E_E~I~s, 
(2.4) 

-->- ' o  ,o' > s o <o> ~ [  o <o">.] ' " " = q)z 2SE -'/~ (v"> E -~/~ - -  6b o ~ <0">, ~ 

where  ~-= L[a/r (a o +4b0) +co]-~; ~2--- L [a/8 (a 0 +16b0) +co] -I. 

A dist inguishing specia l  c h a r a c t e r i s t i c  of Eqs.  (2.4) cons is t s  in the fact that they desc r ibe  a nonl inear  
diffusion p roce s s ,  in whieh the diffusion coeff ic ients  t h e m s e l v e s  a r e  the sought quant i t ies .  

The closed s y s t e m  of equations fo r  the f ields of the veloci ty  and the concentra t ion  ((2.4), (1.10) f rom 
[4]) has the s ame  c h a r a c t e r i s t i c  specia l  fea ture  as the d o s e d  s y s t e m  of equations of the field of the ve loc-  
ity; it is not a s y s t e m  of the diffusion type; the differential  ope ra to r  with r e spec t  to the spat ia l  va r iab le  y 
in the f i r s t  equation of (2.4) is of the f i r s t  o rde r .  As in [4], it can be demons t ra ted  convincingly [9] that 
the connected s y s t e m  of the equations of the f ields of the veloci ty  and the concentrat ion,  in addition to the 
t r iv ia l  11-fold c h a r a c t e r i s t i c s  x =cons t  (kl~ dx: dy = 0), s t i l l has  one rea l  c h a r a c t e r i s t i c ,  coinciding with 
the flow line k 2 -  dx : dy = (u}/(v}.  Thus,  the differential  ope ra to r  of the "connected" s y s t e m  of equations 
can be re la ted  to the weakly hyperbol ic  type [3]. 

The boundary-va lue  p r o b l e m  for  the s y s t e m  of equations (2.4) demands (in addition to the boundary 
conditions for  the field of the veloci ty  [4]) the ass ignment  of boundary conditions for  the field of the con- 
cen~rati ons. 

with g - - ~ - - o c : ( O > = t ,  S----<O">=O, 

with g ~ § vr : <0> = S = <0"> = O. (2.5) 

With r e spec t  to boundary conditions (2.5) the following r e m a r k  can be made:  The field of the concentra t ion 
in the mixing zone depends not only on the ave raged  vaIue of the concentra t ion of the additive,  but a lso  on 
the fluctuations of 0 with r e spec t  to the external  flow, moving with a veloci ty  U 0. There fo re ,  the conditions 
( 0 (x, - ~)> = 1, ( 0 'v '  (x, -~ )~  = ( 0' 2 (x, -~o)) = 0 mean  that each e lement  of the liquid in the externa l  flow con- 
ta ins  exact ly the s a m e  concentra t ion of the chemical  component  and that, the re fo re ,  the re  should be no 
fluctuations.  The fluctuations of the concent ra t ions  in the zone of the mixing a r e  then the resu l t  of mixing 
of a flow with a constant  mean  concentra t ion  of an additive in a turbulent  field with a gradient  of the mean  
veloci ty.  In this pa r t ,  the d iscuss ion  can be improved in what follows by taking into cons idera t ion  initial 
f luctuations of the field of the concentra t ion in the external  flow, which differ  f r o m  zero .  As initial  condi- 
t ions in the c ross  sect ion x =x 0 the re  a r e  given the s tepwise function for  the mean  concentra t ion <0 (x0, y)), 
and ( O'v' (xo, y)) = ( O' 2 (Xo, y)) = O. 

As for  the mean  c h a r a c t e r i s t i c s  of the field of the veloci ty [4], for  the mean  cha rac t e r i s t i c s  of the 
fieid of the concentrat ion,  under the conditions of the p rob lem,  s e l f - s i m i l a r i t y  is to be  expected; this is 
observed  exper imenta l ly  [5]. This p e r m i t s  making the spat ial  va r iab les  x and y in (2.4) d imensionless ,  
using an a r b i t r a r y  I inear  scale ,  and, compar ing  the resu l t s  of a numer ica l  solution with the exper imenta l  
data, to use  the s e l f - s i m i l a r  coordinate  ~ = y / x  [more  exactly,  V =y(x-x0)  , where  x 0 is the a r b i t r a r y  s t a r t  
of mixing of the homogeneous flow and the surrounding mot ionless  liquid]. 

* The closed s y s t e m  of equations of the field of the velocity,  which mus t  be added to s y s t e m  (2.4), is given 
in [4] and is not wri t ten here .  
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The calculating s chem e  for  the s y s t e m  of equations of the field of the concentra t ion is cons t ruc ted  in 
the s ame  way as the di f ference scheme  for  the s y s t e m  of equations of the field of the veloci ty  in [4]. All 
that has been said with r e spec t  to the d i f ference  scheme  in [4] is c a r r i ed  over  to the difference scheme  for  
the s y s t e m  (2.4). Since the s y s t e m  (2.4) "connected" with the s y s t e m  of equations of the field of the veloci ty  
[4] is " insignif icant ,"  the field of the concentra t ion  has no effect  on the momen t s  of the field of the veloci ty 
(as a resu l t  of the postulated "pass iv i ty"  of the additive), an approx imate  solution {by the method of finite 
d i f ferences)  of the s y s t e m  (2.4) can be cons t ruc ted  with a known field of the veloci ty  (and its moments ) .  
Under these  c i r cums tances ,  the quality of the di f ference scheme  (in the sense  of expenditure of machine 
t ime) can be somewhat  r a i sed  by the use  of a m o r e  economical  method for  invers ion  of the ma t r ix  than the 
method of invers ion  with se lect ion of the pr inc ipa l  e lement .  The e s sence  of the method cons is t s  in the 
fact that, as soon as the m a t r i c e s  of the coefficients  of the d i f ference  opera to r  mus t  be degenera te  ove r  
the whole region of integration,  it is not n e c e s s a r y  to inver t  the mat r ix ,  se lect ing its pr inc ipa l  e lement  
each t ime .  The invers ion of the ma t r ix  can be ca r r i ed  out consecut ively,  by columns.  Thus, for  example ,  
in the d i f ference  s chem e  (2.1), (2.2) f r o m  [4] (a ma t r i x  of the fourth o r d e r  was inverted) this method of 
invers ion pe rmi t t ed  decreas ing  the calculat ing t ime  by approx imate ly  one and one-hal f  t imes  in c o m p a r i -  
son with the case  where  the invers ion  of the ma t r ix  was done with se lec t ion of the pr inc ipa l  e lement .  With 
regard  to the accu racy  of the invers ion  of the mat r ix ,  numer ica l  exper imen t s  showed that four significant 
f igures  of the i nve r se  ma t r ix  coincide with both methods of invers ion .  

For  the numer ica l  calculat ions,  the constant  a o (ao/a , where  a is the coefficient  of propor t ional i ty  in 
the express ion  for  the sca le  of the turbulence  L =ax [4]) is de termined,  as in [4], f r o m  exper imenta l  data 
[10] on the diss ipat ion of the energy  of the pulsat ional  energy  (ao/a ~6).  The rat io  of the "diss ipat ive"  
3/4 (ao/a) and the "vo lumet r i c"  c0/c~ constants  was taken equal to unity. A p r o p o s  of the compar i son  made 
below between the numer ica l  r e su l t s  and the exper imenta l  data, it mus t  be noted that the exper imenta l  
devices  in [5, 10, 11] differed somewhat  in cons t ruc t ion  [5], which led to somewhat  different mean cha r -  
a c t e r i s t i c s  of the mixing zone in the s e l f - s i m i l a r  region.  This  r e l a t e s  to the prof i le  of the  mean  veloci ty  
(u} and to a number  of second m o m e n t s  of the field of the veloci ty  [10, 11], as well  as to the integral  sca les  
of the turbulence and the so -ca l l ed  r a t e  of expansion of the mixing zone [12], i .e.,  to some a r b i t r a r y  value, 
making it poss ib le  to give a definite idea of the expansion of the turbulent  region with increas ing  distance 
downst ream.  In the numer ica l  calculat ions,  this  value was found equal to 0.17; according to the data of the 
exper iment  of [11], to 0.16, and of the exper iment  of [10], to 0.20. The constant b0{b0/a) cannot be found a 
p r io r i ,  due to the lack of sui table  exper imenta l  data.  To de te rmine  the numer ica l  value of this constant,  
it was n e c e s s a r y  to have r e c o u r s e  to its numer i ca l  optimization;  as a f i r s t  approximat ion it was poss ib le  
to use a rough evaluation, Obtained f r o m  the following cons idera t ions :  It can be considered exper imenta l ly  
es tabl ished that,  in a turbulent  flow with a gradient  of the mean  velocity,  t r a n s f e r  of a s ca l a r  additive takes  
p lace  m o r e  rapidly than the t r a n s f e r  of momen tum.  With a gradient  descr ip t ion  of diffusion p r o c e s s e s ,  
this  d i f ference  in the t r a n s f e r  m e c h a n i s m  can be qual i ta t ively cha rac t e r i zed  by a d imens ionless  p a r a m e t e r ,  
the turbulent  Schmidt number ,  which mus t  be l e s s  than unity. For  a p lane -pa ra l l e l  flow, f rom the s y s t e m  
of equations (1.10) [4] and the s y s t e m  of equations of the field of the concentrat ion (2.4), neglecting con- 
vect ive  and diffusional t e r m s  ( te rms  with th i rd  moments ) ,  we find 

i (v") d (~> 
( l ~ r U t ) -  c o 3 ,a 0 "] El~2 dy 

t (v") d <0> 

< 0 ' / / )  ~- - -  [~_  -}- "-8" "L-- -~" " - f f 3 %  $bo]Ei/2 d y '  

f r o m  which the turbulent  Schmidt number  
3 a o c o 3b0 co 

t 3 a 0 co S m =  [ d- (-~--~')/(-~-)] -~--r "~- ~-~'J/t-~" j 

(taking account of the fact  that  the ra t io  3/4 (ao/a)(Co/a) is taken equal to unity). F r o m  (2.6), with the ra t io  
adopted 3/4 (ao/a)=9/2 [4], we obtain the condition (b0/a)~ 3/4.  The refined numer ica l  value of b0/a, found 
f r o m  the condition of the a g r e e m e n t  of the calculated prof i le  of the va r i ance  of the fluctuations of the con-  
centra t ion (0 '2) with exper imenta l  value [5], is equal to 0.232. With the numer ica l  implementa t ion  of an 
expanded dif ference scheme  by the method of succes s ive  ma t r i x  in tervals ,  at the outer  boundary of the 
mixing zone (at " +r the sought vec t o r  mus t  be  known (the forward  path of the succes s ive  in te rva ls  is 
f r o m  "-~o~ to " + ~") ,which ,  i nacco rdance  with the boundary conditions at this  boundary (2.5) and (1.14) 
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f rom [4], is a null path. However, for the sys tem of equations of the boundary- layer  type, used to describe 
the field of the flow in the mixing zone, the homogeneous boundary conditions at the external boundary can 
obviously not be satisfied if the approximate solution is sought by the method of finite differences.  In 
actuality, the charac te r i s t ic  curve of the connected sys tem of equations for  the fields of the velocity and 
the concentration, coinciding with the line of the flow, has a slope equal to a rc tan  ((v)/<u}), which, with 
(u) --0 (near the external boundary), takes on an extremal  large  value. At the limit,  with (u) = 0, it is 
equal to ~/2; the flow line and the charac te r i s t i c  curve coinciding with it a re  directed normal  to the x axis. 
The liquid is "drawn into" the turbulent zone f rom the surrounding quiescent liquid at a right angle and, 
consequently, (v} r  By the same token, near  the external boundary, the main p r emi se  of the approxima-  
tion of the boundary l aye r  breaks down: the t r ansve r se  component of the mean velocity of the flow must  
be much less  than the longitudinal (at the external boundary of the mixing zone, the velocities a re  quan- 
t i t ies of the same order  of magnitude). Thus, an attempt to satisfy the boundary condition (u(x, +oo)) =0 
lies beyond the l imits  of the validity of equations of the boundary- layer  type, and cannot be co r rec t .  It has 
been found that a stable (without any kind of vibrations) solution near  the external boundary can be obtained 
if, in the sought vector ,  having seven components,  only one of its components (u(x, +~o)), equal to 0.01, is 
different f rom zero  at " + ~." 

Numerical  resul ts  for  the moments  of the field of the concentration of a chemically inert  additive 
are  given in Figs. 1 and 2, where the solid line is a plot of experimental data [5], and the dashed-dot line 
is a numerical  solution (the "points" of different shape in Fig. 2 correspond to the experimental  points of 
[5]). The number  1 in Fig. 1 denotes the profi le of the mean concentration, and  the number  2, the t r ans -  
ve rse  component of the turbulent flow of the additive (0'v'>, for which there  are  no experimental  data in 
[5]. On the whole, the agreement  between the numer ica l  solution and the experimental  curves  can be r e -  
garded as fully sa t isfactory.  

--3. E f f e c t  o f  a P a s s i v e  C h e m i c a l  R e a c t i o n  on  t h e  F i e l d  

o f  t h e  C o n c e n t r a t i o n  in t h e  T u r b u l e n t  M i x i n g  Z o n e  

With p ~ 0, the right-hand par t  of the sys tem (2.4) contains t e rms  charac ter iz ing  the rate of a chem-  
ical t ransformat ion,  corresponding to the s tat is t ical  charac te r i s t ic  curve of the field of the concentration, 
which, for  the kinetic model under consideration,  have the form of sinks. After  bringing the sys tem (2.4) 
into dimensionless fo rm by the introduction of charac te r i s t i c  scales  of the velocity, the concentration, and 
the length, in the source  t e r m s  of the r ight-hand par t s  (characterizing the rate of the chemical  t r ans fo rma-  
tion) there  appears  a dimensionless pa ramete r ,  depending on the l inear  scale I and equal to the rat io of 
the charac te r i s t i c  t ime of the turbulent diffusion of the chemical component in the flow I / U  o to the char -  
ac ter i s t ic  t ime of the chemical react ion [1/p[ 

r = (ll Uo)l(~l~). (3. i) 

The equation of conservat ion of the mean concentrat ion of the additive has the form 

a <0> \ a <0> a <0'.'> r <O). (3.2) 
<u> a~- + < v / ~ §  a--V-= 

Since we are  considering only one additive, immersed  in an incompress ible  chemically inert  liquid, the 
permiss ib le  chemical  react ion (here of the f i rs t  order)  will be a react ion of the form 
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whose m e c h a n i s m  (with the imposi t ion of the following boundary conditions at the external  boundary of the 
mixing zone with y - - - ~ :  ( ~  - -  1, (0 'v ' )  - -0 )  mus t  sa t i s fy  the condition: a " r e a c t i o n - r a t e  constant"  # 
equal to ze ro  if (0)= 1, and having a constant  value (different f r o m  zero)  in the con t ra ry  case .  The chem-  
ical reac t ion  then a r i s e s  in the mixing zone as the r e su l t  of the turbulent  mixing of the main  flow of an 
i ncompres s ib l e  chemica l ly  iner t  liquid (with a chemica l ly  act ive  additive i m m e r s e d  in it) with the su r round-  
ing (quiescent) medium,  playing the ro le  of some  "ca ta lys t , "  inducing a reac t ion .  Since a chemical  r e a c -  
tion in a turbulent  flow depends on the real  t ime,  all of the cha r ac t e r i s t i c  sca les  mus t  be given a p r io r i .  
The mixing of turbulent  flows, with the p r e s e n c e  of a chemica l  reac t ion  in the mixing zone, is considered 
in an idealized s ta tement  [4]; the re fo re ,  t he re  is no c h a r a c t e r i s t i c  l inea r  sca le  of the p rob lem.  This is 
connected with the fact  that,  for  a descr ip t ion  of a chemical  reac t ion  in the mixing zone under  rea l  condi- 
t ions,  the real  initial conditions mus t  a lso  be  known, including a knowledge of the cha r ac t e r i s t i c  curve  of 
the boundary l aye r ,  coming toge ther  with the separa t ing  wall  (see Fig. 1 in [4]). The ideal izat ion of the 
p ic ture  of the mixing (in the sense  of the ass ignment  of the initial conditions), with a chemical  react ion 
taking place  in the flow, does not of fer  the poss ib i l i ty  of ass igning the l i nea r  sca le  a p r io r i ,  which would 
be at t r ibuted to the flow in the mixing zone p rope r .  However,  the a im of the considera t ion  of the effect  of 
a chemical  r eac t ion  of the f i r s t  o r d e r  cons is t s  in the p re sen t  case  only in taking a quali tat ive account of 
the effect  of this effect  on the moment s  of the field of the concentrat ion,  and fixing the sca le  l in (3.1) is 
not obl igatory.  As the sca le  l, t he re  can be taken, fo r  example ,  the height of the slot  f r o m  which i ssues  
the external  homogeneous flow (see Fig. 1 in [4]), as this is s o m e t i m e s  done [13]; however,  this will be a 
sca le  not re la ted  to the flow in the mixing zone p r o p e r .  

In a qual i ta t ive cons idera t ion  of the effect  of a chemica l  react ion,  the inde te rminacy  in ass ignment  
of the sca le  I will be included in the p a r a m e t e r  F, which can a s s u m e  constant values,  f r o m  zero  (for the 
f rozen flow of a chemica l ly  reac t ing  s t r eam)  to minus infinity (the chemica l ly  equi l ibr ium case) .  

With closing of the s y s t e m  of equations of a field of the concentra t ion of the b o u n d a r y - l a y e r  type on 
the level  of th i rd  moments ,  the functions r and r appear ing  here  in the cor responding  coeff icients  of the 
turbulent  diffusion, have the fo rm*  

3 co _ _  (L/E,:e)]-t, q)l (x, y) = L [-~ (% + 4b0) + r 
k (3.3) 
3 *,(x, L[T(O. +,6b0)+c0- 2r 

and, consequently,  the cor responding  coeff icients  of turbulent  diffusion a r e  found to be independent of the 
t e r m  cha rac t e r i z ing  the ra te  of the chemical  t r ans fo rma t ion .  This conclusion was reached  e a r l i e r  in [14], 
which cons idered  a model  p r o b l e m  of turbulent  diffusion of a s c a l a r  addit ive in a c immical ly  reac t ing  wake, 
where ,  in the equation of the conserva t ion  of the concentrat ion,  the re  r emained  only l inea r  t e r m s  of the 
second o r d e r  and exPress ions  descr ib ing  the ra te  of the chemical  react ion.  The turbulent  field of the 
veloci ty was a s sumed  to be given a p r i o r i .  (The l inear iza t ion  used by the authors  of [14] is equivalent to 
the b reak lng-of f  of the chain of m om en t  equations on the level  of second moments ,  neglect ing third m o -  
ments . )  An analys is  of the p rob l em  showed that  the t e r m  cha rac te r i z ing  the  turbulent  t r a n s f e r  of s c a l a r  
quantity (0 'v '>  is  found to depend on the t e r m  cha rac te r i z ing  the ra te  of the chemica l  react ion.  Conse-  
quently, a lso  the coeff icient  of turbulent  diffusion, if it can be introduced in a chemica l ly  reac t ing  flow, 
will depend on the t e r m  cha rac t e r i z ing  the ra te  of the chemical  t r ans fo rma t ion .  

The numer i ca l  r esu l t s  on the effect  of a nonequi l ibr ium (of the f i r s t  order)  chemica l  react ion  on the 
mean  concentra t ion  of the additive, the t r a n s v e r s e  component  of the turbulent  flow of the additive, and the 

* The functions r and r de te rmined  by fo rmu la s  (3.3) mus t  stand under  the signs of the der iva t ive  with 
r e spec t  to y in the r ight-hand pa r t s  of the l as t  two equations of the s y s t e m  (2.4). 
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va r i ance  of the fluctuations of the concentra t ion of the additive a r e  shown in Figs~ 3-5. In these f igures ,  
the cu rves  co r respond  to different  values  of the p a r a m e t e r  F:  1) r =0; 2) F = -0 .08 ;  3) F = - 0 . 5 ;  4) F = 
- 0 . 1 "  101; 5) F =0.2 �9 101. Along the axis of a b s c i s s a s  on Figs.  3-5 the re  is plotted the d imensionless  
t r a n s v e r s e  coordinate  y/l, while the cu rves  given correspond,  with r e s p e c t  to the coordinate  x, to the 
region where  the re  is s e l f - s i m i l a r i t y  of the s ta t i s t i ca l  p rope r t i e s  of the f ields of the veloci ty and the con- 
cent ra t ion  in the absence  of a chemica l  r eac t ion  (with F =0). A chemical  reac t ion ,  with a r i s e  (in absolute 
value) of the p a r a m e t e r  F, leads  to a d e c r e a s e  in the ampli tude values (0'v'>, (0,2) and of the mean  con- 
centra t ion (0> ; the c h a r a c t e r  of the d e c r e a s e  at the external  boundary of the mixing zone (at . . . .  ") is 
found to be  not smooth,  but s tepwise .  This is a consequence of the boundary conditions imposed  at this  
boundary,  and of the special  c h a r a c t e r i s t i c s  of tile cou r se  of the reac t ion  in the mixing zone pointed out 
above.  

For  F # 0  (see Fig. 3) the prof i le  of the mean  concentra t ion takes on an a lmos t  "s tepwise"  form,  and 
the s ize  of the " s t eps"  r i s e s  with a r i s e  i n t h e  absolute  value of the p a r a m e t e r  F .  At the equi l ibr ium l imi t  
with F ----~o, ( ~ - -  0, the dis t r ibut ion of (0> in a t r a n s v e r s e  d i rec t ion has the f o r m  of a s tepwise  function. 
Such a c h a r a c t e r  of the dec r ea s e  in the function (0> mani fes t s  i tself  in the prof i le  of [(0'2>]1/2 (see Fig. 5), 
br inging about a r i se  in the function [(0 '2) ]i/2 with an i nc rea se  in the absolute value of the p a r a m e t e r  F 
n e a r  the external  boundary of the mixing zone, due to a r i s e  in the gradient  0(0>/~y (the t e r m  2 (0 'v ' )  
(0(0>/3y) i t se l f  c h a r a c t e r i z e s  the genera t ion  of (0'2> as a resu l t  of the in teract ion between the turbulent  
pulsat ions and the gradient  of the mean  concentrat ion) .  Analogous behavior  is observed  in the d e c r e a s e  
in the turbulent  flow of the additive (see Fig. 4) with a r i s e  in the absolute value of the p a r a m e t e r  F .  How- 
ever ,  the behavior  of the function (0 'v ' )  n e a r  the externa l  boundary of the mixing zone, with conserva t ion  
of the t rend in the behavior  of the function (0,2) nea r  this boundary,  is less  sharp ly  expres sed .  

The author thanks I. G. Druker  fo r  his helpful d iscuss ion of the quest ion of the cou r se  of a chemical  
r eac t ion  in a flow. 
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TURBULENT HEAT TRANSFER IN A FLOW OF LIQUID 

METAL NEAR THE WALL 

P .  I .  G e s h e v  UDC 532.517.4 +536.2.023 

The a r t i c l e  d i scusses  turbulent  heat t r a n s f e r  in media  with smal l  Prandt l  numbers  (Pr<< 1 
fo r  liquid meta l s ) .  In this case ,  the t h e r m a l  sub laye r  is P r  -1 t imes  th icker  than the viscous 
sub layer .  It is es tabl i shed that  the coefficient  of turbulent  heat t r a n s f e r  va r i e s  in the t h e r -  
mal  sub layer  propor t iona l ly  to the second power  of the dis tance to the wall; the ra t io  of the 
coeff ic ients  of the turbulent  t r a n s f e r  of heat  and momen tum in this region d e c r e a s e s  in ac -  
cordance  with a l i nea r  law with approach to the wall.  The conclusions of the theory  a r e  com-  
pa red  with the exper imenta l  data of o ther  au thors .  

As is well  known, the PrandtI  number s  fo r  liquid me ta l s  a r e  smal l :  P r  = v / X  ,'., 1 0 - z . . .  10 -3 {v is the 
k inemat ic  viscosi ty;  • is the coeff icient  of t h e r m a l  diffusivity),  and, with X >>v. the region of an influence 
of the m o l e c u l a r  effects  of heat t r a n s f e r  ("the t he rma l  s u b l a y e ~  fa r  l a r g e r  than the viscous  sublayer ,  
whose dimensions  a r e  de te rmined  by the sca le  yl = v / v .  (v.  = 4 r  w / p  is the p a r a m e t e r  of the "dynamic 
velocity";  r w is the f r ic t ion  s t r e s s  at the wall; p is the densi ty of the liquid). The th ickness  of the t he rma l  
sublayer  witb Pr<< 1 is de te rmined  by the sca le  Y2 = ~ / v .  [1]. Outside the t h e r m a l  sublayer ,  in the l a y e r  
of constant  f r ic t ion s t r e s s ,  cons idera t ions  of d imensional i t ies  give a value of XT(y)= const v . y ,  where  
XT(y) is the coeff icient  of turbulent  t h e r m a l  diffusivity; y is the d is tance  to the wall .  The behavior  of the 
function XT(y) in the t h e r m a l  sub layer  is de te rmined  in accordance  with the equation fo r  the pulsat ions of 
the t e m p e r a t u r e .  

1. Let  us cons ider  the turbulent  flow of an incompress ib l e  liquid, flowing above a smooth  sur face  in 
the d i rec t ion  of the x axis;  we d i rec t  the y axis  along a no rma l  to the wall; the z axis is pe rpend icu la r  to 
the x and y axes .  We denote by U(y) the mean  veloci ty  of the flow, and by u, v, w the pulsat ional  compo-  
nents of the velocity in the x, y, z d i rec t ions ,  r e spec t ive ly .  The turbulence  is a s sumed  to be s ta t i s t ica l ly  
s t eady- s t a t e  with r e spec t  to the t i m e  and homogeneous with r e s p e c t  to the coordinates  x and z. 

We l imi t  ou r se lves  to a cons idera t ion  of the region nea r  the wall y<< L (L is the ex te rna l  sca le  of 
the flow), where  the  turbulence has a un iversa l  c h a r a c t e r  [1, 2]. The bas ic  p r e m i s e s  of the theory  of the 
s i m i l a r i t y  of flow n e a r  the wall  a r e  fo rmula ted  in the f o r m  of two hypotheses,  analogous to the  Kolmogor -  
skii s im i l a r i t y  hypotheses  [1] : 

1. In the case  of turbulence  n e a r  the wall with sufficiently l a rge  Reynolds numbers  Re, the s ta t i s t ica l  
conditions of turbulence  of the pulsat ions  of the veloci ty  in a region located c lose  to a smooth wall  a r e  
uniquely de te rmined  by two p a r a m e t e r s :  v .  and v.  
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